Weby shortcut

Publications

Por Glaydston Carvalho Atualizado em 17/12/18 06:07.

Articles in Academic Journals (Research Gate(Scholar Google Citations)

1. Bento, G. C.; Ferreira, O. P.; Pereira, Y. R. L.: Proximal point method for vector optimization on Hadamard manifolds. OPERATIONS RESEARCH LETTERS, v. 46, p. 13-18, 2018.
2. Bento, G. C.; Ferreira, O. P.; Sousa Junior, V. L.: Proximal point method for a special class of nonconvex multiobjective optimization functions. Optimization Letters, v. 12, p. 311-320, 2018.
3. Bento, G. C.; Cruz Neto, J. X.; Santos, P. S. M.; Souza, S. S.: A weighting subgradient algorithm for multiobjective optimization. Optimization Letters, v. 12, p. 399-410, 2018.
4. Bento, G. C.; Bouza Allende, G.; Pereira, Y. R. L.: A Newton-Like Method for Variable Order Vector Optimization Problems. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, v. 177, p. 201-221, 2018.
5. Bento, G. C.; Ferreira, O. P.; Soubeyran, A.; Sousa Júnior, V. L.: Inexact Multi-Objective Local Search Proximal Algorithms: Application to Group Dynamic and Distributive Justice Problems. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, v. 177, p. 181-200, 2018.
6. Bento, G. C.; Cruz Neto, J. X.; López, G.; Soubeyran, A.; Souza, J. C. O.: The Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization with Application to the Compromise Problem. SIAM JOURNAL ON OPTIMIZATION, v. 28, p. 1104-1120, 2018.
7. Bento, G. C.; da Cruz Neto, J. X ; Meireles, L. V.: Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization of Hadamard Manifolds. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, p. 1-16, 2018.
8. Bento, G. C.; Ferreira, O. P.; Melo, J. G.: Iteration-Complexity of Gradient, Subgradient and Proximal Point Methods on Riemannian Manifolds. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS (DORDRECHT. ONLINE), v. 173, p. 548-562, 2017.

9. Bento, G. C.; Cruz Neto, J. X.; Lopes, J. O.; Soares Junior, P. A.; Soubeyran, A.: Generalized Proximal Distances for Bilevel Equilibrium Problems. SIAM Journal on Optimization (Print), v. 26, p. 810-830, 2016.

10. Batista, E. E. A.; Bento, G. C.; Ferreira, O. P.:  Enlargement of Monotone Vector Fields and an Inexact Proximal Point Method for Variational Inequalities in Hadamard Manifolds. Journal of Optimization Theory and Applications (Dordrecht. Online), v. 170, p. 916-931, 2016. (pdf)

11. Bento, G.B.; Cruz Neto, J. X.; Soubeyran, A.; Sousa Júnior, V. L.: Dual Descent Methods as Tension Reduction Systems. Journal of Optimization Theory and Applications, v. 171, p. 209-227, 2016.
12. Bento, G. C.; Cruz Neto, J. X.; Oliveira, P. R.: A New Approach to the Proximal Point Method: Convergence on General Riemannian Manifolds. Journal of Optimization Theory and Applications, v. 168, p. 743-755, 2016.
13. Bento, G. C.; Ferreira, O. P. ; Oliveira, P. R.: Proximal Point Method for a Special Class of Nonconvex Functions on Hadamard Manifolds. Optimization (Print), v. 64, p. 289-319, 2015.
14. Bento, G. C.; Soubeyran, A.: Generalized Inexact Proximal Algorithms: Routine's Formation with Resistance to Change, Following Worthwhile Changes. Journal of Optimization Theory and Applications, v. 166, p. 172-187, 2015.
15. Bento, G. C.; Soubeyran, A.: A Generalized Inexact Proximal Point Method for Nonsmooth Functions that Satisfies Kurdyka Lojasiewicz Inequality. Set-Valued and Variational Analysis: theory and applications, v. 23, p. 501-517, 2015.
16. Batista, E. E. A.; Bento, G. C.; Ferreira, O. P.: An Existence Result for the Generalized Vector Equilibrium Problem on Hadamard Manifolds. Journal of Optimization Theory and Applications, v. 167, p. 550-557, 2015.
17. Bento, G. C.; da Cruz Neto, J. X.: Finite Termination of the Proximal Point Method for Convex Functions on Hadamard Manifolds. Optimization (Print), v. 63, p. 1281-1288, 2014.
18. Bento, G. C.; CRUZ NETO, J. X.; OLIVEIRA, P. R.; Soubeyran, A.: The self regulation problem as an inexact steepest descent method for multicriteria optimization. European Journal of Operational Research, v. 235, p. 494-502, 2014.
19. Bento, G. C.; CRUZ NETO, J. X.; Soubeyran, A.: A Proximal Point-Type Method for Multicriteria Optimization. Set-Valued and Variational Analysis: theory and applications, v. 22, p. 557-573, 2014.
20. Bento, G. C.; CRUZ NETO, J. X. ; SANTOS, P. S. M.: An Inexact Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds. Journal of Optimization Theory and Applications, v. 159, p. 108-124, 2013.
21. Bento, G. C.; CRUZ NETO, J. X.: A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds. Journal of Optimization Theory and Applications, v. 159, p. 125-137, 2013.
22. Bento, G. C.; Melo, Jefferson G.: A subgradient method for convex feasibility on Riemannian Manifolds. Journal of Optimization Theory and Applications, v. 152, p. 773-785, 2012.
23. Bento, G. C.; Ferreira, O. P.; Oliveira, P. R.: Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds. Journal of Optimization Theory and Applications, v. 154, p. 88-107, 2012.
24. Bento, G. C.; Ferreira, O.P.; Oliveira, P.R.: Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds. Nonlinear Analysis, v. 73, p. 564-572, 2010.

 

Ph. D. Thesis

Glaydston de Carvalho Bento. Métodos para otimização em variedades Riemannianas: gradiente para funções vetoriais e proximal local para funções reais (in Portuguese), 2009.  Ph. D. Thesis - Universidade Federal do Rio de Janeiro. Advisors: Orizon Pereira Ferreira and Paulo Roberto Oliveira. CV-Lattes.